Design a Neural Network for Time Series Financial Forecasting: Accuracy and Robustness Analisys
نویسندگان
چکیده
Neural Networks are an artificial intelligence method for modeling complex target functions. For certain types of problems, such as learning to interpret complex realworld sensor data, Artificial Neural Networks (ANNs) are among the most effective learning methods currently know. During the last decade they have been widely applied to the domain of financial time series prediction and their importance in this field is growing. This paper aims to analyze the neural networks for financial time series forecasting. Specifically the ability to predict future trends of North American, European and Brazilian Stock Markets. Accuracy is compared against a traditional forecasting method, generalized autoregressive conditional heteroscedasticity (GARCH). Furthermore, it is examined the best choice of network design for each sample of data. It was concluded that ANNs do have the capability to forecast the stock markets studied and, if properly trained, can improve the robustness according to the network structure.
منابع مشابه
AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملA hybrid computational intelligence model for foreign exchange rate forecasting
Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models propos...
متن کاملNeural Networks Applied to Stock Market Forecasting: an Empirical Analysis
Neural networks are an artificial intelligence method for modeling complex target functions. For certain types of problems, such as learning to interpret complex real-world sensor data, artificial neural networks (ANNs) are among the most effective learning methods. During the last decade, they have been widely applied to the domain of financial time series prediction, and their importance in t...
متن کاملSales Budget Forecasting and Revision by Adaptive Network Fuzzy Base Inference System and Optimization Methods
The sales proceeds are the most important factors for keeping alive profitable companies. So sales and budget sales are considered as important parameters influencing all other decision variables in an organization. Therefore, poor forecasting can lead to great loses in organization caused by inaccurate and non-comprehensive production and human resource planning. In this research a coherent so...
متن کاملVehicle's velocity time series prediction using neural network
This paper presents the prediction of vehicle's velocity time series using neural networks. For this purpose, driving data is firstly collected in real world traffic conditions in the city of Tehran using advance vehicle location devices installed on private cars. A multi-layer perceptron network is then designed for driving time series forecasting. In addition, the results of this study are co...
متن کامل